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COMMENT 

Character functions of SU(3) 

Belal E Baaquie 
Department of Physics, National University of Singapore, Kent Ridge, Singapore 051 1 

Received 4 February 1988 

Abstract. We exactly evaluate the character functions of SU(3) from the heat kernel. Our 
results reproduce the first Weyl formula. We evaluate the Weyl chamber for SU(3) and 
show its connection to the character functions. 

1. Introduction 

The heat kernel on SU(N) comprises the matrix elements of exp(+&V2) where V 2  is 
the SU(N) Laplace-Beltrami operator [l] and CY is a constant. The matrix elements 
of the pth irreducible representation are eigenfunctions of V2. Let U be an element 
of SU(N). Then 

-V29ajiP’( U )  = c(p)9alp’( U )  (1.1) 

where c ( p )  is the value of the quadratic Casimir operator in the pth irreducible 
representation. 

Let I U )  be the coordinate eigenstate of the Hilbert space on SU(N);  then the 
conjugate eigenstate ( p ,  ij satisfies 

( p ,  i j l U ) = d q A ! , P ’ ( U )  1 s i, j s dp (1.2) 
where dp is the dimension of 9a(p). Hence, from (1.1) and (1.2) we have for the SU( N )  
heat kernel 

~ ~ ( a )  = (Wlexp(+faV2)1 V )  (1.3) 

=c exP[-fac(P)l d P X P W + V )  (1.4) 
P 

where 

xp(  U )  = Tr 9(p)( U )  

is the character function for the pth irreducible representation, and the sum in (1.4) 
is over all p. Equation (1.4) is the key equation for identifying the character functions. 

In the fundamental representation, let 

(1.6) U =  W + V =  R diag(eiAl,. . . , e’ A K ) R + 

with R an element of S U ( N )  and 
N 

A l = O .  
I = 1  

(1.7) 
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For SU(3), we have for (1.6) 
U = R diag(eiA, eiB, e-i(Ai-B))R+, 

The irreducible representations of SU(3) are labelled by two positive integers ( p ,  q )  
and we choose the convention that (1, 1) is the one-dimensional (trivial) representation, 
3 is (2, 1) and 3* is (1,2). It is well known that for SU(3) 

dp,q = i P d P  + 4 )  
C(P,4)=$(P2+q2+P9)-1 

x,*,q(A, B )  = Xq,p(A, B )  

Xp,q(A, B )  = -Xp.q(B, A). 

p , q = 1 , 2  ,..., 00 

and 

Hence, from (1.4), (1.8) and (1.9), we have up to constants 

( 1 . 9 ~ )  

(1.96) 

(1.94 

(1.9d) 

2. Heat kernel for SU(3) 

Using differential [2] or functional integral methods [3], the heat kernel can be evaluated 
explicitly. The result for SU(N) is 

xexp( -zc 1 (AI + 2 ~ 1 1 ) ~ ) .  
I 

For SU(3), we have from (1.8), using A, = A and A2 = B, the following: 
1 +m +m 

K 3 ( a ) = -  c c - B(m)lEA(~)+2B(m)1[2A(~)+ N m ) l  

x exp{-(l/a)[A2(1) + B2(  m )  + A(l)B(m)]} (2.2) 

s(A, B)=8s in f (A-B)  s ini(2A+B) s ini(A+2B) (2.3) 

s(A, B )  /=-m m = - - m  

where 

and 

A( I )  = A + 2 d  B ( m ) =  B+%lrm. (2.4) 
Comparing (2.2) with (1.10) will yield the character functions of SU(3). The main 

obstacle in converting (2.2) into (1.10) is that (2.2) is an expansion of K 3  in powers 
of exp(-l/a) whereas (1.10) is in powers of exp(-a). The other difference is that, 
in (l.lO), we sum only over integers p ,  q such that p ,  q > 0, whereas in (2.2) the sum 
in 1, m is over all integers. 

We first transform equation (2.2) by applying the Poisson summation formula, 
namely 

rm dx 
/=-cc p=-m 21r 

+cc 

A =  Y -exp(2lripx).~ 
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where J ;  is any ‘reasonable’ continuation off; to non-integral values of 1. Hence, from 
(2.2) and (2.5) we have 

where 
+m 

K ; ( p ,  4 )  = I_, dx dY 

x exp(ipx - iqy)(x - y)(x + 2 y ) ( 2 x  4 y)  exp[ -(2/ a)(x’+ y2 + xy)] (2.7) 

(2.8) = constant x ipq( p + q )  exp[-fa .  $ ( p 2 +  q 2 + p q ) ] .  

Therefore, from (2.6) and (2.8), after some simplifications 

with 

[sin(pA- qB)+sin(qA-pB)I. 1 
Qp,,(A, B )  = - 

s (A,  B )  

( 2 . 9 ~ )  

(2.9b) 

Comparing ( 2 . 9 ~ )  with (1.10) we note that the p,  q summations in (2.9) are over 
four quadrants in the p q  plane, whereas in (1.10) it is only over the first quadrant. We 
hence have to restrict the sum in ( 2 . 9 ~ )  to the first quadrant, and this will be possible 
due to certain symmetries of dp,q and c ( p ,  q )  (see figure 1). 

We have 

(2.10a) 

(2.10 b) 

(2.1 l a )  
(2.11b) 

Figure 1. Reduction of summation from four quadrants in ( p ,  q )  to the first quadrant. 
Shaded portions are summed over. For the significance of (a) - (c )  see the text. 
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Using (2.10b) and (2.11b) we reduce (2.9) to a sum over the first and fourth quadrant, 
i.e. (figure l (b))  

(2.12) 

The first sum in (2.12) is over the first quadrant in ( p ,  q ) ,  but the second sum is over 
the fourth quadrant and has to be further reduced. 

We have 
m - 1  

Ki2’ = c c dp,q e x p [ - M p ,  4)1.R,, 
p = l  q=-m 

Using the fact that 

we have 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

0 3 m  

q = l  p = q + 1  
= c c dp.-q exP[-bC(P - 4, 4)Ifip,-, 

Rearranging the summations in (2.18) we have (figure l (c))  
m m  

K?’= c c dp,y exP[-bc(P, q)I[-.Rp+q,-q +fip,-(p+q’l. (2.19) 
p = l  q=1 

Hence we have, from (2.13), (2.14) and (2.19) 
a3 

= c dp.4 exP[-;ac(P, 4)l[q7., - f i p + , - ,  +fip,-(p+q)l. (2.20) 
P.q=L 

3. The character functions 

By comparing (1.10) and (2.20) we have for SU(3) character functions 

i - {exp(ipA - igB) - exp( -iqA + ipB) 
xp*q - -m 

+exp[-ip(A + B)](exp( -iqA) - exp(-iqB)) 

+exp[iq(A+ B)](exp(ipB) -exp(ipA)]} 

s(A, B ) = 8 s i n f ( A - B ) s i n i ( A + 2 B ) s i n t ( 2 A + B ) .  
where, from (2.3) 
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Note that , Y ~ , ~  satisfies (1 .9~)  and (1.9d); for the 3 (fundamental) representation, as is 
expected from (1.8), we have 

We also have the non-trivial identity 
x ~ , ~ ( A ,  B) =e iA+e iB+e- i (A+B) ,  (3.3) 

Xp.4 (030) = fP4 ( P + 4 ) (3.4a) 
= dP,V (3.46) 

The expression for ,yp,q in (3.1) is a ratio of two determinants and is the first Weyl 
formula for the character functions [4]. Weyl’s derivation uses the integral properties 
of the group. A purely algebraic derivation of ,yp,q can be given using the Lie algebra 
[5]. The derivation given here is independent of these two derivations. 

It is well known that the invariant measure on SU(3) for class functions is given 
by [41 

d U =  s2(A, B) dA d B  - I T ~ T A , B S T .  (3.5) 
where U is an element of SU(3). With this measure we have the expected orthonor- 
mality theorem given by [4] 

(3.6) 

Further simplification of (3.6) can be made. Since ,yp,4 depends only on the trace of 
U, it is invariant under the Weyl group W; this discrete and finite subgroup of SU( N )  
consists of reflections of root vectors in the root space, and for SU(3) consists of six 
elements. For an element T E W, we have 

W: U +  T-IUT. (3.7) 

s(A, B) 3 0. (3.8) 

The Weyl chamber in the SU(3) group space consists of points A, B such that 

The total space U ( l ) O U ( l )  spanned by A and B is split into six disjoint chambers, 
each a reflection of the compact domain r defined from (3.8) by (figure 2) 

r : A s B  O s A + 2 B 4 2 1 r  0 6 2 A + B S 2 r .  (3.9) 

n I I I I I I 

1. in n $n Jn 2n 
A 

Figure 2. Domain of the Weyl chamber r in the toral space of (A, B )  signified by the 
shaded portion. 
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The orbit of the Weyl chamber r under the action of the Weyl group is the total space 
U ( l ) O U ( l )  ([l], p 316). We hence have, using the Weyl group 

l . d A  dBs2(A, B)X?p.qdA, B)X(p.q)(A, B) = 8ppJqq' (3.10) 

(3.11) 

The form (3.10) with integration over r which is one sixth the area of the torus is 
more suitable for numerical calculations. Also, to prove (3.10) directly without using 
the Weyl group is cumbersome and complicated. 

AI. 

AI- = area of r = $ 7 ~ ~ .  

4. Conclusions 

We derived the SU(3) character functions from the SU(3) heat kernel, a derivation 
independent from Weyl's classic formulae. Certain non-trivial symmetries of the 
dimensionality and Casimir function were central to the derivation. It is not possible 
to derive the SU(N)  character functions from the SU(N)  heat kernel, since we need 
N - 1 algebraic invariants for it, whereas the heat kernel uses only two of these. 
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