Character functions of $\mathrm{SU}(3)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 212651
(http://iopscience.iop.org/0305-4470/21/11/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:38

Please note that terms and conditions apply.

COMMENT

Character functions of $\mathbf{S U (3)}$

Belal E Baaquie
Department of Physics, National University of Singapore, Kent Ridge, Singapore 0511

Received 4 February 1988

Abstract

We exactly evaluate the character functions of SU(3) from the heat kernel. Our results reproduce the first Weyl formula. We evaluate the Weyl chamber for $\operatorname{SU}(3)$ and show its connection to the character functions.

1. Introduction

The heat kernel on $\operatorname{SU}(N)$ comprises the matrix elements of $\exp \left(+\frac{1}{2} \alpha \nabla^{2}\right)$ where ∇^{2} is the $\operatorname{SU}(N)$ Laplace-Beltrami operator [1] and α is a constant. The matrix elements of the p th irreducible representation are eigenfunctions of ∇^{2}. Let U be an element of $\operatorname{SU}(N)$. Then

$$
\begin{equation*}
-\nabla^{2} \mathscr{D}_{i j}^{(p)}(U)=c(p) \mathscr{D}_{i j}^{(p)}(U) \tag{1.1}
\end{equation*}
$$

where $c(p)$ is the value of the quadratic Casimir operator in the p th irreducible representation.

Let $|U\rangle$ be the coordinate eigenstate of the Hilbert space on $\mathrm{SU}(N)$; then the conjugate eigenstate $\langle p, i j|$ satisfies

$$
\begin{equation*}
\langle p, i j \mid U\rangle=\sqrt{\mathrm{d} p} \mathscr{D}_{i j}^{(p)}(U) \quad 1 \leqslant i, j \leqslant \mathrm{~d} p \tag{1.2}
\end{equation*}
$$

where $\mathrm{d} p$ is the dimension of $\mathscr{D}^{(p)}$. Hence, from (1.1) and (1.2) we have for the $\operatorname{SU}(N)$ heat kernel

$$
\begin{align*}
K_{N}(\alpha) & =\langle W| \exp \left(+\frac{1}{2} \alpha \nabla^{2}\right)|V\rangle \tag{1.3}\\
& =\sum_{p} \exp \left[-\frac{1}{2} \alpha c(p)\right] \mathrm{d} p \chi_{p}\left(W^{+} V\right) \tag{1.4}
\end{align*}
$$

where

$$
\begin{equation*}
\chi_{p}(U)=\operatorname{Tr} \mathscr{D}^{(p)}(U) \tag{1.5}
\end{equation*}
$$

is the character function for the p th irreducible representation, and the sum in (1.4) is over all p. Equation (1.4) is the key equation for identifying the character functions.

In the fundamental representation, let

$$
\begin{equation*}
U \equiv W^{+} V=R \operatorname{diag}\left(\mathrm{e}^{\mathrm{i} A_{1}}, \ldots, \mathrm{e}^{\mathrm{i} A_{N}}\right) R^{+} \tag{1.6}
\end{equation*}
$$

with R an element of $\operatorname{SU}(N)$ and

$$
\begin{equation*}
\sum_{t=1}^{N} A_{t}=0 \tag{1.7}
\end{equation*}
$$

For $\mathrm{SU}(3)$, we have for (1.6)

$$
\begin{equation*}
U=R \operatorname{diag}\left(\mathrm{e}^{\mathrm{i} A}, \mathrm{e}^{\mathrm{i} B}, \mathrm{e}^{-\mathrm{i}(A+B)}\right) R^{+} . \tag{1.8}
\end{equation*}
$$

The irreducible representations of $\mathrm{SU}(3)$ are labelled by two positive integers (p, q) and we choose the convention that $(1,1)$ is the one-dimensional (trivial) representation, $\underline{\underline{3}}$ is $(2,1)$ and $\underline{3}^{*}$ is $(1,2)$. It is well known that for $\operatorname{SU}(3)$

$$
\begin{align*}
& d_{p, q}=\frac{1}{2} p q(p+q) \quad p, q=1,2, \ldots, \infty \tag{1.9a}\\
& c(p, q)=\frac{1}{3}\left(p^{2}+q^{2}+p q\right)-1 \tag{1.9b}
\end{align*}
$$

and

$$
\begin{align*}
& \chi_{p, q}^{*}(A, B)=\chi_{q, p}(A, B) \tag{1.9c}\\
& \chi_{p, q}(A, B)=-\chi_{p, q}(B, A) . \tag{1.9d}
\end{align*}
$$

Hence, from (1.4), (1.8) and (1.9), we have up to constants

$$
\begin{equation*}
K_{3}=\sum_{p, q=1}^{\infty} \frac{1}{2} p q(p+q) \frac{1}{2}\left[\chi_{p, q}(A, B)+\chi_{p, q}^{*}(A, B)\right] \exp \left[-\frac{1}{2} \alpha \frac{1}{3}\left(p^{2}+q^{2}+p q\right)\right] . \tag{1.10}
\end{equation*}
$$

2. Heat kernel for $\operatorname{SU}(3)$

Using differential [2] or functional integral methods [3], the heat kernel can be evaluated explicitly. The result for $\operatorname{SU}(N)$ is

$$
\begin{align*}
K_{N}(\alpha)=\prod_{I=1}^{N} & \sum_{l_{I}=-\infty}^{+\infty}\left(\prod_{I<J} \frac{A_{I}-A_{J}+2 \pi l_{I}-2 \pi l_{J}}{\sin \frac{1}{2}\left(A_{I}-A_{J}+2 \pi l_{I}-2 \pi l_{J}\right)}\right) \delta\left(\sum_{l} l_{I}\right) \\
& \times \exp \left(-\frac{1}{2 \alpha} \sum_{I}\left(A_{I}+2 \pi l_{I}\right)^{2}\right) . \tag{2.1}
\end{align*}
$$

For $\operatorname{SU}(3)$, we have from (1.8), using $A_{1}=A$ and $A_{2}=B$, the following:

$$
\begin{gather*}
K_{3}(\alpha)=\frac{1}{s(A, B)} \sum_{l=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty}[A(l)-B(m)][A(l)+2 B(m)][2 A(l)+B(m)] \\
\times \exp \left\{-(1 / \alpha)\left[A^{2}(l)+B^{2}(m)+A(l) B(m)\right]\right\} \tag{2.2}
\end{gather*}
$$

where

$$
\begin{equation*}
s(A, B)=8 \sin \frac{1}{2}(A-B) \sin \frac{1}{2}(2 A+B) \sin \frac{1}{2}(A+2 B) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A(l)=A+2 \pi l \quad B(m)=B+2 \pi m . \tag{2.4}
\end{equation*}
$$

Comparing (2.2) with (1.10) will yield the character functions of $\mathrm{SU}(3)$. The main obstacle in converting (2.2) into (1.10) is that (2.2) is an expansion of K_{3} in powers of $\exp (-1 / \alpha)$ whereas (1.10) is in powers of $\exp (-\alpha)$. The other difference is that, in (1.10), we sum only over integers p, q such that $p, q>0$, whereas in (2.2) the sum in l, m is over all integers.

We first transform equation (2.2) by applying the Poisson summation formula, namely

$$
\begin{equation*}
\sum_{l=-\infty}^{+\infty} f_{l}=\sum_{p=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\mathrm{d} x}{2 \pi} \exp (2 \pi \mathrm{i} p x) f_{x} \tag{2.5}
\end{equation*}
$$

where f_{x} is any 'reasonable' continuation of f_{1} to non-integral values of l. Hence, from (2.2) and (2.5) we have

$$
\begin{equation*}
K_{3}(\alpha)=\frac{1}{s(A, B)} \sum_{p, q=-\infty}^{+\infty} \mathrm{e}^{-\mathrm{i} p A} \mathrm{e}^{\mathrm{i} q B} K_{3}^{\prime}(p, q) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
K_{3}^{\prime}(p, q)= & \int_{-\infty}^{+\infty} \mathrm{d} x \mathrm{~d} y \\
& \times \exp (\mathrm{i} p x-\mathrm{i} q y)(x-y)(x+2 y)(2 x+y) \exp \left[-(2 / \alpha)\left(x^{2}+y^{2}+x y\right)\right] \tag{2.7}\\
= & \text { constant } \times \mathrm{i} p q(p+q) \exp \left[-\frac{1}{2} \alpha \cdot \frac{1}{3}\left(p^{2}+q^{2}+p q\right)\right] . \tag{2.8}
\end{align*}
$$

Therefore, from (2.6) and (2.8), after some simplifications

$$
\begin{equation*}
K_{3}(\alpha)=\sum_{p, q=-\infty}^{+\infty} d_{p, q} \exp \left[-\frac{1}{2} \alpha c(p, q)\right] \Omega_{p, q}(A, B) \tag{2.9a}
\end{equation*}
$$

with

$$
\begin{equation*}
\Omega_{p, q}(A, B)=\frac{1}{s(A, B)}[\sin (p A-q B)+\sin (q A-p B)] . \tag{2.9b}
\end{equation*}
$$

Comparing (2.9a) with (1.10) we note that the p, q summations in (2.9) are over four quadrants in the $p q$ plane, whereas in (1.10) it is only over the first quadrant. We hence have to restrict the sum in ($2.9 a$) to the first quadrant, and this will be possible due to certain symmetries of $d_{p, q}$ and $c(p, q)$ (see figure 1).

We have

$$
\begin{align*}
d_{p, q} & =d_{q, p} \tag{2.10a}\\
& =-d_{-p,-q} \tag{2.10b}
\end{align*}
$$

and

$$
\begin{align*}
c(p, q) & =c(q, p) \tag{2.11a}\\
& =c(-p,-q) \tag{2.11b}
\end{align*}
$$

Figure 1. Reduction of summation from four quadrants in (p, q) to the first quadrant. Shaded portions are summed over. For the significance of $(a)-(c)$ see the text.

Using (2.10b) and (2.11b) we reduce (2.9) to a sum over the first and fourth quadrant, i.e. (figure $1(b)$)

$$
\begin{align*}
K_{3}(\alpha) & =\sum_{p=1}^{\infty}\left(\sum_{q=1}^{\infty}+\sum_{q=-\infty}^{-1}\right) d_{p, q} \Omega_{p, q} \exp \left[-\frac{1}{2} \alpha c(p, q)\right] \tag{2.12}\\
& \equiv K_{3}^{(1)}+K_{3}^{(2)} \tag{2.13}
\end{align*}
$$

The first sum in (2.12) is over the first quadrant in (p, q), but the second sum is over the fourth quadrant and has to be further reduced.

We have

$$
\begin{align*}
K_{3}^{(2)} & =\sum_{p=1}^{\infty} \sum_{q=-\infty}^{-1} d_{p, q} \exp \left[-\frac{1}{2} \alpha c(p, q)\right] \Omega_{p, q} \tag{2.14}\\
& =\sum_{p=1}^{\infty} \sum_{q=1}^{\infty} d_{p,-q} \exp \left[-\frac{1}{2} \alpha c(p,-q)\right] \Omega_{p,-q} \tag{2.15}
\end{align*}
$$

Using the fact that

$$
c(p,-q)= \begin{cases}c(p-q, q) & p>q \tag{2.16}\\ c(p, q-p) & p<q\end{cases}
$$

we have

$$
\begin{align*}
& K_{3}^{(2)}=\sum_{p=1}^{\infty}\left(\sum_{q=1}^{p-1}+\sum_{q=p+1}^{\infty}\right) d_{p,-q} \exp \left[-\frac{1}{2} \alpha c(p,-q)\right] \Omega_{p,-q} \tag{2.17}\\
&= \sum_{q=1}^{\infty} \sum_{p=q+1}^{\infty} d_{p,-q} \exp \left[-\frac{1}{2} \alpha c(p-q, q)\right] \Omega_{p,-q} \\
&+\sum_{p=1}^{\infty} \sum_{q=p+1}^{\infty} d_{p,-q} \exp \left[-\frac{1}{2} \alpha c(p, q-p)\right] \Omega_{p,-q} \tag{2.18}
\end{align*}
$$

Rearranging the summations in (2.18) we have (figure $1(c)$)

$$
\begin{equation*}
K_{3}^{(2)}=\sum_{p=1}^{\infty} \sum_{q=1}^{\infty} d_{p, q} \exp \left[-\frac{1}{2} \alpha c(p, q)\right]\left[-\Omega_{p+q,-q}+\Omega_{p,-(p+q)}\right] \tag{2.19}
\end{equation*}
$$

Hence we have, from (2.13), (2.14) and (2.19)

$$
\begin{equation*}
K_{3}(\alpha)=\sum_{p, q=1}^{\infty} d_{p, q} \exp \left[-\frac{1}{2} \alpha c(p, q)\right]\left[\Omega_{p, q}-\Omega_{p+q,-q}+\Omega_{p,-(p+q)}\right] \tag{2.20}
\end{equation*}
$$

3. The character functions

By comparing (1.10) and (2.20) we have for $\operatorname{SU}(3)$ character functions

$$
\begin{align*}
\chi_{p, q}=-\frac{\mathrm{i}}{s(A, B)} & \{\exp (\mathrm{i} p A-\mathrm{i} q B)-\exp (-\mathrm{i} q A+\mathrm{i} p B) \\
+ & \exp [-\mathrm{i} p(A+B)](\exp (-\mathrm{i} q A)-\exp (-\mathrm{i} q B)) \\
& +\exp [\mathrm{i} q(A+B)](\exp (\mathrm{i} p B)-\exp (\mathrm{i} p A)]\} \tag{3.1}
\end{align*}
$$

where, from (2.3)

$$
\begin{equation*}
s(A, B)=8 \sin \frac{1}{2}(A-B) \sin \frac{1}{2}(A+2 B) \sin \frac{1}{2}(2 A+B) \tag{3.2}
\end{equation*}
$$

Note that $\chi_{p, q}$ satisfies (1.9c) and (1.9d); for the 3 (fundamental) representation, as is expected from (1.8), we have

$$
\begin{equation*}
\chi_{2,1}(A, B)=\mathrm{e}^{\mathrm{i} A}+\mathrm{e}^{\mathrm{i} B}+\mathrm{e}^{-\mathrm{i}(A+B)} \tag{3.3}
\end{equation*}
$$

We also have the non-trivial identity

$$
\begin{align*}
\chi_{p, q}(0,0) & =\frac{1}{2} p q(p+q) \tag{3.4a}\\
& =d_{p, q} . \tag{3.4b}
\end{align*}
$$

The expression for $\chi_{p, 9}$ in (3.1) is a ratio of two determinants and is the first Weyl formula for the character functions [4]. Weyl's derivation uses the integral properties of the group. A purely algebraic derivation of $\chi_{p, q}$ can be given using the Lie algebra [5]. The derivation given here is independent of these two derivations.

It is well known that the invariant measure on $\operatorname{SU}(3)$ for class functions is given by [4]

$$
\begin{equation*}
\mathrm{d} U=s^{2}(A, B) \mathrm{d} A \mathrm{~d} B \quad-\pi \leqslant A, B \leqslant \pi \tag{3.5}
\end{equation*}
$$

where U is an element of $\operatorname{SU}(3)$. With this measure we have the expected orthonormality theorem given by [4]

$$
\begin{equation*}
\int_{-\pi}^{+\pi} \frac{\mathrm{d} A \mathrm{~d} B}{(2 \pi)^{2}} s^{2}(A, B) \chi_{(p, q)}^{*}(A, B) \chi_{\left(p^{\prime}, q^{\prime}\right)}(A, B)=\delta_{p p^{\prime}} \delta_{p p^{\prime}} \tag{3.6}
\end{equation*}
$$

Further simplification of (3.6) can be made. Since $\chi_{p, q}$ depends only on the trace of U, it is invariant under the Weyl group W; this discrete and finite subgroup of $\operatorname{SU}(N)$ consists of reflections of root vectors in the root space, and for $\operatorname{SU(3)}$ consists of six elements. For an element $T \in \mathrm{~W}$, we have

$$
\begin{equation*}
\mathrm{W}: U \rightarrow T^{-1} U T \tag{3.7}
\end{equation*}
$$

The Weyl chamber in the $\mathrm{SU}(3)$ group space consists of points A, B such that

$$
\begin{equation*}
s(A, B) \geqslant 0 \tag{3.8}
\end{equation*}
$$

The total space $\mathrm{U}(1) \otimes \mathrm{U}(1)$ spanned by A and B is split into six disjoint chambers, each a reflection of the compact domain Γ defined from (3.8) by (figure 2)

$$
\begin{equation*}
\Gamma: A \geqslant B \quad 0 \leqslant A+2 B \leqslant 2 \pi \quad 0 \leqslant 2 A+B \leqslant 2 \pi \tag{3.9}
\end{equation*}
$$

Figure 2. Domain of the Weyl chamber Γ in the toral space of (A, B) signified by the shaded portion.

The orbit of the Weyl chamber Γ under the action of the Weyl group is the total space $\mathrm{U}(1) \otimes \mathrm{U}(1)([1], \mathrm{p} 316)$. We hence have, using the Weyl group

$$
\begin{align*}
& \frac{1}{A_{\Gamma}} \int_{\Gamma} \mathrm{d} A \mathrm{~d} B s^{2}(A, B) \chi_{(p, q)}^{*}(A, B)_{(p, q)}(A, B)=\delta_{p p^{\prime}} \delta_{q q^{\prime}} \tag{3.10}\\
& A_{\Gamma}=\text { area of } \Gamma=\frac{4}{6} \pi^{2} \tag{3.11}
\end{align*}
$$

The form (3.10) with integration over Γ which is one sixth the area of the torus is more suitable for numerical calculations. Also, to prove (3.10) directly without using the Weyl group is cumbersome and complicated.

4. Conclusions

We derived the $\mathrm{SU}(3)$ character functions from the $\mathrm{SU}(3)$ heat kernel, a derivation independent from Weyl's classic formulae. Certain non-trivial symmetries of the dimensionality and Casimir function were central to the derivation. It is not possible to derive the $\operatorname{SU}(N)$ character functions from the $\operatorname{SU}(N)$ heat kernel, since we need $N-1$ algebraic invariants for it, whereas the heat kernel uses only two of these.

Acknowledgment

I would like to thank Professor C K Chew for helpful discussions.

References

[1] Helgason S 1978 Differential Geometry, Lie Groups and Symmetric Spaces (New York: Academic)
[2] Menotti P and Onofri E 1981 Nucl. Phys. B. 190288
[3] Baaquie B E 1985 Phys. Rev. D 321007
[4] Weyl H 1935 Classical Theory of Groups (Princeton, NJ: Princeton University Press)
[5] Jacobson N 1979 Lie Algebras (New York: Dover)

